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Abstract 

We designed a deep learning (DL) pipeline for 

automated left atrial (LA) segmentation, which is crucial 

to evaluate function and hemodynamics from 4D flow 

MRI. We included 59 patients (1.5T) with atrial 

fibrillation (AF) and 27 healthy controls (3T) who 

underwent MRI. We implemented and trained a dual 3D 

ResUnet architecture to crop and segment the LA. Results 

on the testing set (N=16 patients/9 controls) revealed 

good DL performances against ground truth (GT) expert 

masks on the time frame used for GT initialization (mean 

Dice score, DSC=0.85±0.06; Hausdorff distance, 

HD=4.15±1.41 mm), with higher performances for the 

more represented AF patients (DSC=0.87±0.03, 

HD=3.73±0.89 mm) than controls (DSC=0.82±0.07, 

HD=4.80±1.76 mm). A drop in DSC was observed across 

all time frames on which GT was registered (all data: 

DSC=0.81±0.07, patients: DSC=0.84±0.03, controls: 

DSC=0.77±0.08), mainly attributed to limited 3T data 

and external time frame in training. Finally, extracted LA 

volume and hemodynamic indices showed good 

agreement with expert-derived values (LA volume: 

r=0.85, bias µ=6.06±8.67%, main vortex eccentricity: 

r=0.88, µ=0.55±9.23%, vortex amplitude evaluated 

through λ₂ and Q criteria: r = 0.94, µ=-12.47±9.25% and 

r=0.91, µ=-16.27±10.95%, respectively).  

1. Introduction 

Left atrial (LA) cardiomyopathy underlies atrial 

fibrillation (AF), which is a cardiac arrhythmia and 

considered to be a major contributor of thrombi formation 

and stroke. Indeed, AF involves alterations in atrial wall 

dynamics, tissue characteristics (including fibrosis and 

adipose tissue infiltration), as well as inner flow 

hemodynamics.  

Therefore, the accurate assessment of LA function and 

hemodynamics is crucial to decipher such complex 

phenomena. MRI is considered as the reference technique 

for the evaluation of cardiac chamber volumes and 

function, as well as myocardial mass. Furthermore, three-

dimensional (3D) cine (time-resolved) phase-contrast 

MRI with three-directional velocity encoding, referred to 

as “4D flow MRI”, has proven useful to provide non-

invasive comprehensive visualization and quantification 

of intra-cardiac blood flow hemodynamics. 

 However, the analysis of 4D flow MRI data, which 

generate thousands of images per exam, and particularly 

the segmentation step is complex, labor-intensive and 

time-consuming. As such, most image segmentation 

methodologies previously reported in the 4D flow MRI 

literature based either on conventional image processing 

methods [1], [2] or deep learning (DL) [3], [4], focused 

on the aorta, which has a large and tubular shape with 

straight segments aligned along its longitudinal axis 

inducing a laminar flow. On the other hand, geometry and 

hemodynamic patterns of left heart cavities and especially 

the LA are more complex, including low and time-varying 

velocity magnitude and direction, resulting in spatially 

heterogeneous signal throughout the cardiac cycle.  

Consequently, only few studies have proposed 

thresholding techniques, atlas-based approaches [5], or 

DL [6] to segment cardiac chambers from 4D flow 

images. However, these studies focused only on the most 

contrast-enhanced phase of the cardiac cycle. As such, 

there is a notable gap in dynamic segmentation methods 

for cardiac 4D flow MRI images, which can be attributed 

to the complexity of these images, the lack of databases 

since this sequence is primarily used in research, and the 

scarcity of annotations.  

Accordingly, the purpose of our study was to propose 

an automated DL-based LA segmentation and 

hemodynamics evaluation, using 4D flow MRI. Our 

ultimate goal is to investigate LA hemodynamic patterns 

in patients with AF. 

2. Materials and methods 

2.1. Population and acquisitions 
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We included the first 59 patients (65.3% male, 64 ± 10 

years) with AF from the two CATS-AF (NCT05565183) 

and CT-AF (NCT04281329) ongoing prospective studies. 

Each patient underwent, within an interval of 51 ± 98 

days: 1) a multi-phase cardiac volume CT scan , 2) a 1.5 

T cardiac MRI (Siemens), including 2D+t cine SSFP 

anatomical images in short-axis, as well as 2- and 4-

chamber views, and a 4D flow acquisition covering the 

entire heart. We also retrospectively included 4D flow 

data from 27 healthy volunteers (71.4% male, 51 ± 18 

years) acquired on a General Electric 3T MRI at a second 

site (NCT02537041) as controls. Acquisition parameters 

are summarized in Table 1. 

Table 1. Data acquisition parameters. 

 3D CT 

scan  

2D+t cine 

SSFP MRI 

4D flow 

MRI 

(patients) 

4D flow 

MRI 

(controls) 

Acquisition 

matrix 

512 x 512  
x  

[141-748] 

128 x 256 

160  

x  
[93-102] 

x  

[40-60] 

256  

x 
 [96-134]  

x  

[120-148] 

Time 

phases (n) 
1-2 25-50 25 25-50 

Spatial 

resolution 

(mm²) 

0.31 x 0.75 
[1.40-1.56]  

x  

[1.40-1.56] 

1.82 x 2.37 2.93 x 3.51 

Slice 

thickness 

(mm) 

0.4 6-8 3 1 

Encoding 

velocity 

(cm/s) 

- - 150 - 200 250 

2.2. Dataset annotation  

To provide a training dataset for DL models we used 

the 3D Slicer software to generate and then register the 

annotations first performed on highly-resolved CT 

volumes in systole and/or diastole onto 4D flow MRI 

anatomical modulus volumes, for each patient. To achieve 

this, we first isolated the MRI temporal phase closest to 

that used to annotate the CT data, using trigger time from 

the DICOM headers. If the patient had two annotated 

phases on the CT data, we selected the atrial systolic 

phase, corresponding to maximal LA dilation, as the 

reference. We then manually registered CT and MRI 

volumes to align and overlay the LA, using prominent 

anatomical structures such as the pulmonary veins as 

landmarks. For this registration, we used a T_M 3D affine 

transformation matrix (CT→MRI), allowing for 

translation, rotation, scaling, and reflection. Finally, a 

manual correction was applied to each registered mask. 

Finally, we excluded pulmonary veins and LA appendage 

from 4D flow MRI volumes to isolate LA cavity only. 

 In the second step, all temporal phases of 4D flow 

MRI anatomical modulus images were registered to the 

initialization phase for which CT annotation was 

available. This registration was carried out using the 

Elastix registration algorithm [7], available on 3D Slicer. 

Elastix functionalities include the following: 1) the 

algorithm uses an initial transformation to estimate a basic 

alignment between images, typically based on prominent 

anatomical features; 2) an optimization method is then 

applied to refine such transformation; 3) finally, rigid, 

affine, or non-rigid (B-splines) transformations are 

employed to estimate the deformations necessary for 

precise anatomical alignment. The resulting deformation 

fields are then applied to the LA mask from the 

initialization image to obtain LA masks aligned to all time 

phases of the cardiac cycle (Figure 1). Visual check is 

finally performed to assess the overall quality of the 

deformation. For 3T MRI datasets, manual segmentation 

was performed on systolic frame since CT was not 

acquired in healthy individuals, and time registration step 

using Elastix did not perform well due to less contrast. 

Thus, we only used the initial single frame where manual 

annotations were made. Finally, LA was manually 

segmented on all 4D flow volume time frames using 3D 

Slicer in 16 patients and 9 controls for DL model 

evaluation purposes. 

 

Figure1. Temporal registration of 3D volumes from a 4D 

flow MRI sequence to the segmented reference phase 

from CT, and propagation of the reference segmented LA 

masks across the entire cardiac cycle. 

2.3. Deep learning models, training 

strategies, loss function and 

implementation 

We implemented and evaluated a DL architecture for 

LA segmentation, based on ResUnet [8]. The pipeline 

consists of two main steps: the first stage is a 3D ResUnet 

with three levels, performing an initial binary 

segmentation of the heart. This network identifies the 

region of interest and applies a cropping step, reducing 

background noise. The second stage is also a 3D ResUnet 

with four levels, to segment the LA from the background. 

By leveraging deeper architecture, this model captures 

finer anatomical details and enhances spatial coherence of 

the predicted masks. 3D architecture, trained across 

spatial frames, ensures morphological consistency 

throughout the volume. 

We trained our model using a database including 43 

AF patients and 18 controls. To ensure high quality 

annotations, we selected 7 volumes near the initialization 
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phase (initial phase ± 3 time frames) for patients and only 

the initial frame for controls, resulting in N = 638 training 

volumes (319 + augmentation using rotation, noise and 

blur).  

In the evaluation, we used the fully annotated database 

including 16 patients and 9 controls, resulting in N = 625 

evaluation volumes.  

For both networks, we used a combination of Binary 

Cross-Entropy (BCE) and Dice Loss where the BCE 

component provides stable gradients, while the Dice Loss 

encourages better global shape alignment between 

predictions and ground truth. Networks were 

implemented in PyTorch and initialized via a truncated 

normal distribution centered on 0. The two networks were 

trained with the Adam optimizer and a training rate of 

0.001 and for 50 and 100 epochs, respectively, with a 

batch size of 32 and 64, respectively. Our model was 

trained on a dedicated computing hub: dual Intel® Xeon® 

Gold 6226R 3.90 GHz (16 hearts), 512 GB ddr4 RAM, 

two NVIDIA A6000 GPU (48 GB of dedicated memory 

each).  

2.4. Prediction evaluation and 

quantitative indices 

We evaluated our model performances using the Dice 

similarity score (DSC), which measures the overlap 

between predicted and ground truth segmented masks, and 

the Hausdorff distance (HD), which quantifies the 

maximum distance between masks, both on the initial time 

frame (systolic time frame) of the reference label and 

across the full cardiac cycle. To achieve a more 

comprehensive assessment over the full cycle, we also 

evaluated the model’s performance in terms of volume 

estimation by comparing predicted LA volumes to 

reference LA volumes estimated from cine SSFP MRI 

images. These reference volumes were derived from 2- and 

4-chamber views using the biplane area-length formula as 

follows:  
 

𝑉 = 10 × (
8

3𝜋
) ×

𝐴2𝑐×𝐴4𝑐

(𝐿2𝑐+ 𝐿4𝑐)/2
, (1) 

 

where A₂C and A₄C represent the surface area and L₂C and 

L₄C correspond to the length measured between mitral 

plane and the most distant LA apical point, in the 2- and 

4-chamber views, respectively. 

In order to investigate abnormal flow patterns, we also 

evaluated our model by analyzing the main vortex 

magnitude within the LA using λ₂ and Q criteria [9], 

where λ2 is the second highest eigenvalue of the S²+Ω² 

matrix (derived from Navier-Stokes equations) and when 

negative indicates organized rotational flow (vortex), and 

Q identifies areas where the vorticity magnitude is greater 

than the magnitude of the rate of strain as 
1

2
(‖Ω‖2 − ‖S‖2). 

λ₂ and Q values were averaged throughout the LA volume 

and the cardiac cycle. We also assessed vortex 

eccentricity, defined as the distance between LA center of 

mass and the vortex center, normalized by LA radius.  

3. Results 

The proposed model was evaluated for LA 

segmentation from 4D flow MRI across the full cardiac 

cycle. Multiphase performance results are summarized in 

Table 2, reporting both DSC and HD metrics across the 

entire dataset, as well as separately for patients and 

controls. On the initial time frame, the model achieved a 

mean DSC of 0.85 ± 0.06 and HD of 4.15 ± 1.41 mm, with 

improved scores for patient data (DSC = 0.87 ± 0.03, HD 

= 3.73 ± 0.89 mm) compared to healthy controls (DSC = 

0.82 ± 0.07, HD = 4.80 ± 1.76 mm). We observed same 

trends on all time frame evaluations. This reduction in 

performances might be due to the less representativity of 

3T control data in the training. 

Table 2. Results of the DL pipeline evaluation for LA 

segmentation in terms of Dice score and Hausdorff 

distance against ground truth on both initial and all time-

frames.  

LA volume and hemodynamic biomarker predictions 

were compared to expert-derived ground truth values, as 

detailed in Table 3 and Figure 2. LA volume was 

accurately estimated, with a correlation R = 0.85 and a 

bias of 6.06% (limits of agreement: -2.60 to 14.73%). For 

vortex coherence, λ₂ values were well approximated (r = 

0.94, with a bias of -12.47 [-5.79; -19.16] %). Q also 

showed strong association (r = 0.91) with a moderate 

underestimation (-16.27 [-27,21; 5.31] %). Finally, 

eccentricity predictions were consistent with the reference 

correlation r = 0.88 and a bias of 0.55 [-8.68; 9.78]%.  

Table 3. Comparison of LA volume and hemodynamic 

indices obtained using DL against ground truth (GT). p 

values for comparison between variables, Pearson 

correlation coefficients (R), and biases (μ) along with 

limits of agreement (loa) expressed in percentage of 

reference GT value, are provided.   

 GT Prediction p R 𝝁(loa) (%) 

Volume 

(ml) 
71.75±33.07 76.09±28.50 >0.05 0.85 

6.06 
(-2.60; 14.73) 

λ₂ (s-1) -41.80±24.43 -36.59±19.35 >0.05 0.94 
-12.47 

(-5.79; -19.16) 

Q (s-1) 40.83±24.03 34.19±18.47 >0.05 0.91 
-16.27 

(-27,21; 5.31) 

Eccentricity 0.045±0.02 0.045±0.02 >0.05 0.88 
0.55 

(-8.68; 9.78) 

 
Initial time frame N=25 All time frames N=625 

DSC HD (mm) DSC HD (mm) 

All data 0.85 ± 0.06 4.15 ± 1.41 0.81 ± 0.07 8.50 ± 4.94 

Patients 0.87 ± 0.03 3.73 ± 0.89 0.84 ± 0.03 8.43 ± 5.76 

Controls 0.82 ± 0.07 4.80 ± 1.76 0.77 ± 0.08 8.60 ± 3.35 
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Figure 2: Linear regressions for comparison between 

predicted and reference LA volume and hemodynamic-

related vortex eccentricity and amplitude as provided by 

λ₂ and Q criteria. 

4. Conclusion  

In this study, we proposed a pipeline to register LA 

segmented masks from 3D CT scan to 4D flow MRI 

volumes,  as well as through time to generate 3D+t 

consistent ground truth annotations. More importantly, 

we then tested a dual 3D ResUnet architecture to crop and 

segment the LA. This configuration achieved overall 

good performances, with DSC values above 0.80 on 

average , and demonstrated good to strong agreement with 

expert reference for LA volume, main vortex amplitude 

and eccentricity. The robustness of the model across 

dynamic sequences highlights its suitability for accurate, 

automated LA segmentation and functional biomarker 

extraction from 4D flow MRI. 
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