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Abstract

We designed a deep learning (DL) pipeline for
automated left atrial (LA) segmentation, which is crucial
to evaluate function and hemodynamics from 4D flow
MRI. We included 59 patients (1.5T) with atrial
fibrillation (AF) and 27 healthy controls (3T) who
underwent MRI. We implemented and trained a dual 3D
ResUnet architecture to crop and segment the LA. Results
on the testing set (N=16 patients/9 controls) revealed
good DL performances against ground truth (GT) expert
masks on the time frame used for GT initialization (mean
Dice score, DSC=0.85+0.06; Hausdorff distance,
HD=4.15£1.41 mm), with higher performances for the
more represented AF patients (DSC=0.87+0.03,
HD=3.73£0.89 mm) than controls (DSC=0.82+0.07,
HD=4.80£1.76 mm). A drop in DSC was observed across
all time frames on which GT was registered (all data:
DSC=0.81+0.07, patients: DSC=0.84+0.03, controls:
DSC=0.77+0.08), mainly attributed to limited 3T data
and external time frame in training. Finally, extracted LA
volume and hemodynamic indices showed good
agreement with expert-derived values (LA volume:
r=0.85, bias u=6.06+£8.67%, main vortex eccentricity:
r=0.88, n=0.55+9.23%, vortex amplitude evaluated
through 12 and Q criteria: r = 0.94, p=-12.47+9.25% and
r=0.91, p=-16.27+10.95%, respectively).

1. Introduction

Left atrial (LA) cardiomyopathy underlies atrial
fibrillation (AF), which is a cardiac arrhythmia and
considered to be a major contributor of thrombi formation
and stroke. Indeed, AF involves alterations in atrial wall
dynamics, tissue characteristics (including fibrosis and
adipose tissue infiltration), as well as inner flow
hemodynamics.

Therefore, the accurate assessment of LA function and
hemodynamics is crucial to decipher such complex
phenomena. MRI is considered as the reference technique
for the evaluation of cardiac chamber volumes and
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function, as well as myocardial mass. Furthermore, three-
dimensional (3D) cine (time-resolved) phase-contrast
MRI with three-directional velocity encoding, referred to
as “4D flow MRI”, has proven useful to provide non-
invasive comprehensive visualization and quantification
of intra-cardiac blood flow hemodynamics.

However, the analysis of 4D flow MRI data, which
generate thousands of images per exam, and particularly
the segmentation step is complex, labor-intensive and
time-consuming. As such, most image segmentation
methodologies previously reported in the 4D flow MRI
literature based either on conventional image processing
methods [1], [2] or deep learning (DL) [3], [4], focused
on the aorta, which has a large and tubular shape with
straight segments aligned along its longitudinal axis
inducing a laminar flow. On the other hand, geometry and
hemodynamic patterns of left heart cavities and especially
the LA are more complex, including low and time-varying
velocity magnitude and direction, resulting in spatially
heterogeneous signal throughout the cardiac cycle.

Consequently, only few studies have proposed
thresholding techniques, atlas-based approaches [5], or
DL [6] to segment cardiac chambers from 4D flow
images. However, these studies focused only on the most
contrast-enhanced phase of the cardiac cycle. As such,
there is a notable gap in dynamic segmentation methods
for cardiac 4D flow MRI images, which can be attributed
to the complexity of these images, the lack of databases
since this sequence is primarily used in research, and the
scarcity of annotations.

Accordingly, the purpose of our study was to propose
an automated DL-based LA segmentation and
hemodynamics evaluation, using 4D flow MRI. Our
ultimate goal is to investigate LA hemodynamic patterns
in patients with AF.

2. Materials and methods

2.1. Population and acquisitions
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We included the first 59 patients (65.3% male, 64 + 10
years) with AF from the two CATS-AF (NCT05565183)
and CT-AF (NCT04281329) ongoing prospective studies.
Each patient underwent, within an interval of 51 + 98
days: 1) a multi-phase cardiac volume CT scan, 2) a 1.5
T cardiac MRI (Siemens), including 2D+t cine SSFP
anatomical images in short-axis, as well as 2- and 4-
chamber views, and a 4D flow acquisition covering the
entire heart. We also retrospectively included 4D flow
data from 27 healthy volunteers (71.4% male, 51 + 18
years) acquired on a General Electric 3T MRI at a second
site (NCT02537041) as controls. Acquisition parameters
are summarized in Table 1.

Table 1. Data acquisition parameters.

3DCT 2D+t cine 4D flow 4D flow
scan SSFP MRI MRI MRI
(patients) (controls)
160 256
- 512 x 512 X X
Acquisition 128x256  [93-102]  [96-134]
[141-748] X X
[40-60]  [120-148]
Time 12 25-50 25 25-50
phases (n)
Spatial [1.40-1.56]
resolution 0.31x0.75 X 1.82x2.37 293x351
(mm2) [1.40-1.56]
Slice
thickness 0.4 6-8 3 1
(mm)
Encoding
velocity 150 - 200 250
(cm/s)
2.2. Dataset annotation

To provide a training dataset for DL models we used
the 3D Slicer software to generate and then register the
annotations first performed on highly-resolved CT
volumes in systole and/or diastole onto 4D flow MRI
anatomical modulus volumes, for each patient. To achieve
this, we first isolated the MRI temporal phase closest to
that used to annotate the CT data, using trigger time from
the DICOM headers. If the patient had two annotated
phases on the CT data, we selected the atrial systolic
phase, corresponding to maximal LA dilation, as the
reference. We then manually registered CT and MRI
volumes to align and overlay the LA, using prominent
anatomical structures such as the pulmonary veins as
landmarks. For this registration, we used a T_M 3D affine
transformation matrix (CT—MRI), allowing for
translation, rotation, scaling, and reflection. Finally, a
manual correction was applied to each registered mask.
Finally, we excluded pulmonary veins and LA appendage
from 4D flow MRI volumes to isolate LA cavity only.

In the second step, all temporal phases of 4D flow
MRI anatomical modulus images were registered to the
initialization phase for which CT annotation was
available. This registration was carried out using the
Elastix registration algorithm [7], available on 3D Slicer.

Elastix functionalities include the following: 1) the
algorithm uses an initial transformation to estimate a basic
alignment between images, typically based on prominent
anatomical features; 2) an optimization method is then
applied to refine such transformation; 3) finally, rigid,
affine, or non-rigid (B-splines) transformations are
employed to estimate the deformations necessary for
precise anatomical alignment. The resulting deformation
fields are then applied to the LA mask from the
initialization image to obtain LA masks aligned to all time
phases of the cardiac cycle (Figure 1). Visual check is
finally performed to assess the overall quality of the
deformation. For 3T MRI datasets, manual segmentation
was performed on systolic frame since CT was not
acquired in healthy individuals, and time registration step
using Elastix did not perform well due to less contrast.
Thus, we only used the initial single frame where manual
annotations were made. Finally, LA was manually
segmented on all 4D flow volume time frames using 3D
Slicer in 16 patients and 9 controls for DL model
evaluation purposes.
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Figurel. Temporal registration of 3D volumes from a 4D
flow MRI sequence to the segmented reference phase
from CT, and propagation of the reference segmented LA
masks across the entire cardiac cycle.

2.3. Deep learning
strategies,  loss

implementation

models, training
function  and

We implemented and evaluated a DL architecture for
LA segmentation, based on ResUnet [8]. The pipeline
consists of two main steps: the first stage is a 3D ResUnet
with three levels, performing an initial binary
segmentation of the heart. This network identifies the
region of interest and applies a cropping step, reducing
background noise. The second stage is also a 3D ResUnet
with four levels, to segment the LA from the background.
By leveraging deeper architecture, this model captures
finer anatomical details and enhances spatial coherence of
the predicted masks. 3D architecture, trained across
spatial frames, ensures morphological consistency
throughout the volume.

We trained our model using a database including 43
AF patients and 18 controls. To ensure high quality
annotations, we selected 7 volumes near the initialization
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phase (initial phase + 3 time frames) for patients and only
the initial frame for controls, resulting in N = 638 training
volumes (319 + augmentation using rotation, noise and
blur).

In the evaluation, we used the fully annotated database
including 16 patients and 9 controls, resulting in N = 625
evaluation volumes.

For both networks, we used a combination of Binary
Cross-Entropy (BCE) and Dice Loss where the BCE
component provides stable gradients, while the Dice Loss
encourages better global shape alignment between
predictions and ground truth. Networks were
implemented in PyTorch and initialized via a truncated
normal distribution centered on 0. The two networks were
trained with the Adam optimizer and a training rate of
0.001 and for 50 and 100 epochs, respectively, with a
batch size of 32 and 64, respectively. Our model was
trained on a dedicated computing hub: dual Intel® Xeon®
Gold 6226R 3.90 GHz (16 hearts), 512 GB ddr4 RAM,
two NVIDIA A6000 GPU (48 GB of dedicated memory
each).
2.4.

Prediction evaluation and

quantitative indices

We evaluated our model performances using the Dice
similarity score (DSC), which measures the overlap
between predicted and ground truth segmented masks, and
the Hausdorff distance (HD), which quantifies the
maximum distance between masks, both on the initial time
frame (systolic time frame) of the reference label and
across the full cardiac cycle. To achieve a more
comprehensive assessment over the full cycle, we also
evaluated the model’s performance in terms of volume
estimation by comparing predicted LA volumes to
reference LA volumes estimated from cine SSFP MRI
images. These reference volumes were derived from 2- and
4-chamber views using the biplane area-length formula as
follows:

AzcXAgc
(Lzc+ Lag)/2’

V:10><(i)><

pw (1
where Axc and Aac represent the surface area and Lc and
Lac correspond to the length measured between mitral
plane and the most distant LA apical point, in the 2- and
4-chamber views, respectively.

In order to investigate abnormal flow patterns, we also
evaluated our model by analyzing the main vortex
magnitude within the LA using A. and Q criteria [9],
where 2, is the second highest eigenvalue of the S2+Q2
matrix (derived from Navier-Stokes equations) and when
negative indicates organized rotational flow (vortex), and
Q identifies areas where the vorticity magnitude is greater
than the magnitude of the rate of strain asi(llﬂll2 —ISI1%).

A2 and Q values were averaged throughout the LA volume
and the cardiac cycle. We also assessed vortex
eccentricity, defined as the distance between LA center of
mass and the vortex center, normalized by LA radius.

3. Results

The proposed model was evaluated for LA
segmentation from 4D flow MRI across the full cardiac
cycle. Multiphase performance results are summarized in
Table 2, reporting both DSC and HD metrics across the
entire dataset, as well as separately for patients and
controls. On the initial time frame, the model achieved a
mean DSC of 0.85 + 0.06 and HD of 4.15 + 1.41 mm, with
improved scores for patient data (DSC = 0.87 + 0.03, HD
= 3.73 £ 0.89 mm) compared to healthy controls (DSC =
0.82 £ 0.07, HD = 4.80 = 1.76 mm). We observed same
trends on all time frame evaluations. This reduction in
performances might be due to the less representativity of
3T control data in the training.

Table 2. Results of the DL pipeline evaluation for LA
segmentation in terms of Dice score and Hausdorff
distance against ground truth on both initial and all time-
frames.

Initial time frame N=25 All time frames N=625

DSC HD (mm) DSC HD (mm)
Alldata 0.85+0.06 4.15+141 0.81+0.07 850+4.94
Patients 0.87+0.03 3.73+0.89 0.84+0.03 8.43+576
Controls 0.82+0.07 480+1.76 0.77+0.08 8.60+3.35

LA volume and hemodynamic biomarker predictions
were compared to expert-derived ground truth values, as
detailed in Table 3 and Figure 2. LA volume was
accurately estimated, with a correlation R = 0.85 and a
bias of 6.06% (limits of agreement: -2.60 to 14.73%). For
vortex coherence, A» values were well approximated (r =
0.94, with a bias of -12.47 [-5.79; -19.16] %). Q also
showed strong association (r = 0.91) with a moderate
underestimation (-16.27 [-27,21; 5.31] %). Finally,
eccentricity predictions were consistent with the reference
correlation r = 0.88 and a bias of 0.55 [-8.68; 9.78]%.

Table 3. Comparison of LA volume and hemodynamic
indices obtained using DL against ground truth (GT). p
values for comparison between variables, Pearson
correlation coefficients (R), and biases (p) along with
limits of agreement (loa) expressed in percentage of
reference GT value, are provided.

GT Prediction  p R p(l0a) (%)

Volume 6.06
ml) 717543307 760942850 >005 085 (i ooy

-12.47

3 i )

Az (s7) 41.80+24.43 -36.59+19.35 >0.05 0.94 (5.79. -19.16)

Qs 40.83+24.03 34.19+18.47 >0.05 091 -16.27
o U 0o 03 (97.21;5.31)

ici 0.55
Eccentricity 0.0450.02  0.045:0.02 >005 088 g ¢co”g )
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Figure 2: Linear regressions for comparison between
predicted and reference LA volume and hemodynamic-
related vortex eccentricity and amplitude as provided by
A2 and Q criteria.

4. Conclusion

In this study, we proposed a pipeline to register LA
segmented masks from 3D CT scan to 4D flow MRI
volumes, as well as through time to generate 3D+t
consistent ground truth annotations. More importantly,
we then tested a dual 3D ResUnet architecture to crop and
segment the LA. This configuration achieved overall
good performances, with DSC values above 0.80 on
average , and demonstrated good to strong agreement with
expert reference for LA volume, main vortex amplitude
and eccentricity. The robustness of the model across
dynamic sequences highlights its suitability for accurate,
automated LA segmentation and functional biomarker
extraction from 4D flow MRI.
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